Company
We care
Genetic diseases
Genetic diseases arise from changes, known as mutations, to a person’s DNA that prevent some function of the body from performing normally. Not every mutation in someone’s DNA means they will develop a genetic disorder, but certain mutations are associated with genetic diseases.
Genetic mutations are responsible for literally thousands of disorders and diseases, some of which are more commonly recognized such as muscular dystrophy and cancer, while others are ultra-rare such as pure autonomic failure (PAF) or familial amyloidosis (hATTR).
AAV based gene therapy
Genes are the blueprints of the human body. They instruct the body’s cells how to make proteins critical to their function. Many familiar and not-so-familiar diseases and disorders are caused by the faulty expression of proteins from corrupted or missing genes or by environmental modifications of genes or proteins.
Gene therapy uses modified viruses or other technologies to deliver therapeutic genes to cells or tissues to address genetic diseases at their source. One of the most exciting advances in modern medicine has been the discovery of how the adeno-associated virus (AAV) can be used as an effective delivery system for therapeutic genetic material into living tissue. AAV gene therapy has broad therapeutic implications for a vast array of diseases.
There are important benefits to using AAV as the primary means for delivering gene therapeutics:
- AAV is a virus that is not known to result in human disease.
- AAV cannot make more of itself without outside help, so it will not replicate in the body like normal viruses do. This lets scientists precisely control how much AAV will be given.
For these reasons, AAV has become the dominant form of gene therapy for genetic diseases. AAV is driving today’s therapeutic discoveries and is used in the only two FDA-approved gene therapies currently available.
This information comes and can be found at AskBio’s website.
AAV based gene therapies
How does AAV work?
Simply put, AAV is transformed from a naturally occurring virus into a delivery mechanism for gene therapy. The viral DNA is replaced with new DNA, and it becomes a precisely coded vector and is no longer considered a virus, as most of the viral components have been replaced. The AAV vector is then used to deliver normal copies of genes to the right tissues or organs in the body, but it now delivers the therapy that has been engineered into it.
Today, AAV technology has advanced to target a wide range of tissues and cells for the treatment of many genetic diseases. With some diseases, it is possible to put two copies of a gene into a vector, not just one. These vectors are called self-complementary AAV, or scAAV. Our co-founder, Dr. Jude Samulski, helped discover and refine this technology, and it is used in many therapies across the industry today.
Path of Values
We are an ethical company, results-oriented and focused on the value of people above any other consideration. Our primary aim is to contribute to healing those who are beyond the hope of traditional therapeutics.
Mision & Vision
Mision: To lead the way to deliver enzymatic DNA technology to be an industry standard in enabling gene therapies that are aimed at changing patients’ lives.
Vision: To be a market leader and strategic partner of choice for gene therapy developers from R&D to commercialization, providing a safe, scalable, regulatory robust and cost-effective enzymatic DNA solution.
Unique and special
Everyone working at TAAV is unique and special. Respect, diversity, commitment, honesty, cooperation and inclusion are at our DNA and are part of our corporate culture. Our team works highly committed and motivated with an open spirit always recognizing the value of diversity.